Micropatterning as a tool to decipher cell morphogenesis and functions.

نویسنده

  • Manuel Théry
چکیده

In situ, cells are highly sensitive to geometrical and mechanical constraints from their microenvironment. These parameters are, however, uncontrolled under classic culture conditions, which are thus highly artefactual. Micro-engineering techniques provide tools to modify the chemical properties of cell culture substrates at sub-cellular scales. These can be used to restrict the location and shape of the substrate regions, in which cells can attach, so-called micropatterns. Recent progress in micropatterning techniques has enabled the control of most of the crucial parameters of the cell microenvironment. Engineered micropatterns can provide a micrometer-scale, soft, 3-dimensional, complex and dynamic microenvironment for individual cells or for multi-cellular arrangements. Although artificial, micropatterned substrates allow the reconstitution of physiological in situ conditions for controlled in vitro cell culture and have been used to reveal fundamental cell morphogenetic processes as highlighted in this review. By manipulating micropattern shapes, cells were shown to precisely adapt their cytoskeleton architecture to the geometry of their microenvironment. Remodelling of actin and microtubule networks participates in the adaptation of the entire cell polarity with respect to external constraints. These modifications further impact cell migration, growth and differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunohistochemical study of type III collagen expression during pre and post-natal rat skin morphogenesis

Objective(s):Skin extracellular matrix, which contains type I and type III collagens, is involved in skin development. The aim of this study was to investigate type III collagen distribution pattern as well as its changes during pre and post-natal skin morphogenesis in rats. Materials and Methods: Ventral skins of Wistar rat embryos at different stages from 10 to 20 gestational day (E10-E20) a...

متن کامل

Ultra-rapid laser protein micropatterning: screening for directed polarization of single neurons.

Protein micropatterning is a powerful tool for studying the effects of extracellular signals on cell development and regeneration. Laser micropatterning of proteins is the most flexible method for patterning many different geometries, protein densities, and concentration gradients. Despite these advantages, laser micropatterning remains prohibitively slow for most applications. Here, we take ad...

متن کامل

Microcontact Peeling as a New Method for Cell Micropatterning

Micropatterning is becoming a powerful tool for studying morphogenetic and differentiation processes of cells. Here we describe a new micropatterning technique, which we refer to as microcontact peeling. Polydimethylsiloxane (PDMS) substrates were treated with oxygen plasma, and the resulting hydrophilic layer of the surface was locally peeled off through direct contact with a peeling stamp mad...

متن کامل

High throughput and multiplex localization of proteins and cells for in situ micropatterning using pneumatic microfluidics.

Micropatterning technologies are emerging as an enabling tool for various microfluidic-based applications in life sciences. However, the high throughput and multiplex localization of multiple bio-components in a microfluidic device has not yet been well established. In this paper, we describe a simple and in situ micropatterning method using an integrated microfluidic device with pneumatic micr...

متن کامل

Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis.

Angiogenesis, which is morphogenesis undertaken by endothelial cells (ECs) during new blood vessel formation, has been traditionally studied on natural extracellular matrix proteins. In this work, we aimed to regulate and guide angiogenesis on synthetic, bioactive poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. PEGDA hydrogel is intrinsically cell nonadhesive and highly resistant to protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2010